Making PageRank Algorithm Robust to Collusion

Hui Zhang1, Ashish Goel2, Ramesh Govindan1, Kahn Mason2, Benjamin Van Roy2

1University of Southern California
2Stanford University
Outline

- Research motivation.
- PageRank algorithm: a brief introduction.
- Study of PageRank’s robustness to collusion.
- Adaptive-resetting: make PageRank robust to collusion.
- Conclusion & future works.
Research motivation

- Build reputation in large-scale systems
 - P2P file sharing systems
 - Blogging communities
 - Networked gaming, ..., etc.

- Collusion-proofness is an essential criterion in evaluating a rating scheme.
PageRank [Brin1998]

- A rating scheme to rank hypertext documents on the WWW.

- An iterative algorithm to calculate the importance of a web page based on the importance of its parent pages.

- Can be applied to other systems than WWW.
PageRank: random walk model

- As time goes on, the expected percentage of steps the walker is at each node v converges to the PageRank weight $PR(v)$.

4/21/2005
PageRank: is it collusion-proof?

- Can a node easily boost its rank by manipulating its outgoing links with others’?
Amp(G): a metric on group collusion

- In the system of node group G, for a subgroup G', the amplification factor Amp(G') = \[\frac{W_G(G')}{W_{in}(G')} \]

\[W_G(G') = \sum_{i: \ i \in G'} PR(i) \]

\[W_{in}(G') = \sum_{(i,j): \ i \notin G', \ j \in G', \ \exists i \rightarrow j} \frac{PR(i)}{out(i)} + \frac{|G'|}{|G|} \]
Theorem on Amp

- In the original PageRank system,

\[\forall G' \subseteq G, Amp(G') < \frac{1}{\varepsilon} \]

where \(\varepsilon \) is the resetting probability.
Two experimental topologies

• W, a Web link topology
 ▪ Contains the link structure of upwards of 80 million URLs.
 ▪ Source: the Stanford WebBase.

• B, a weblog blogrolling topology
 ▪ Contains the blogrolling structure of upwards of 72,000 blogs.
 ▪ Source: www.blogstreet.com - the XML -RPC weblog service.
Experiment 1: Collusion200

• Model a small number of web pages *simultaneously* colluding.

• Methodology:

 • 100 colluding groups;

 • Each colluding group has the circle topology consisting of two nodes with adjacent ranks;

 • Arbitrarily chose nodes originally ranked around 1000\(^{th}\), 2000\(^{th}\), …, 100000\(^{th}\).

 • \(\varepsilon = 0.15\).
Experiment result of **Collusion200 (I)**

Figure 1: W - Amplification factors of the 100 colluding groups in *Collusion200*.

4/21/2005
Experiment result of **Collusion200 (III)**

Figure 2: W – new PR rank after **Collusion200**.
There is a long flat portion...

Figure 3: The PR weight distribution of 4 topologies.

4/21/2005
Next step: how to detect collusions?

- Identifying colluding groups is unlikely to be computationally tractable.
 - The densest k-subgraph problem [Feige et al. 1997].
 - The classical CLIQUE problem.
 - The problem of finding hiding large cliques in random graphs [Juels 1998].
An observation on collusion behaviors

- To increase their PR weight, i.e., the stationary weight in the random walk, the colluding nodes will stall the random walk.

- When the resetting probability ϵ increases, the colluding nodes must suffer a significant drop in PR weight.

- Therefore, we expect the PR weight of colluding nodes to be highly correlated with $1/\epsilon$ (the average walk length), while that of non-colluding nodes is relatively insensitive to the change in ϵ.
An intuitive example

node

referential link
An intuitive example

.node

referential link

A colluding group
An intuitive example

- A colluding node x: $\text{PR}(x) = \frac{1}{K + (N - K)\varepsilon} \approx \frac{1}{N\varepsilon}$, and $\text{co-co}($PR(x), $1/\varepsilon$) ≈ 1. (co-co: correlation coefficient)

- A non-colluding node y: $\text{PR}(x) = \frac{\varepsilon}{K + (N - K)\varepsilon} \approx \frac{1}{N}$, and $\text{co-co}($PR(y), $1/\varepsilon$) $\approx 0.$

4/21/2005

N: the system size; K: the colluding group size; $K << N.$
Co-co distribution in real-world graphs

Figure 4: the co-co PDF distribution in W and B: the $[0, 0.1]$ range actually corresponds to $[-1, 0.1]$ range.
Adaptive-resetting scheme

• Part I – collusion detection:
 ▪ Given the topology, calculate the PR vector under different ε values.
 - $\{\varepsilon\} = \{0.0375, 0.05, 0.075, 0.15, 0.3, 0.45, 0.6\}$, $\varepsilon_{\text{default}} = 0.15$.
 ▪ Calculate the correlation coefficient between the curve of each node x's PR weight and the curve of $1/\varepsilon$. Label it as $co-co(x)$.

• Part II – ε personalization:
 ▪ Calculate each node x's out-link personalized-\(\varepsilon = F(\varepsilon_{\text{default}}, co-co(x))\).
 - Exponential function $F_{\text{Exp}} = \varepsilon_{\text{default}}^{(1.0-co-co(x))}$
 - Linear function $F_{\text{Linear}} = \varepsilon_{\text{default}} + (0.5-\varepsilon_{\text{default}})*co-co(x)$
 ▪ The final PR weight vector is calculated with these personalized resetting values.
Experiment result of **Collusion200 (IV)**

Figure 5: \(W \) - Amplification factors of the 100 colluding groups in *Collusion200*.

4/21/2005
Experiment result of *Collusion200 (V)*

Figure 6: W – new PR weight after *Collusion200*.

4/21/2005
Experiment result of **Collusion200 (VI)**

Figure 7: W – new PR rank after **Collusion200**.
Experiment 2: Collusion22

- Model various colluding subgraphs.
- Methodology:
 - 3 colluding groups:
 - **G1: 10-node ring**
 - **G2: 10-node star topology**
 - **G3: 2-node ring**

4/21/2005
Experiment result of **Collusion22 (I)**

Figure 8: Amplification factors of the 3 colluding groups in Collusion22.

4/21/2005
Experiment result of **Collusion22 (II)**

Figure 9: W – new PR weight after **Collusion22**.
New top-25 URL list in W

<table>
<thead>
<tr>
<th>Rank</th>
<th>Old list</th>
<th>New list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>http://www.tucows.com/</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>http://www.gendex.com/ged2html</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>http://www.acme.com/</td>
</tr>
<tr>
<td>13</td>
<td>http://www.acme.com/software/thttpd</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>http://upload.tucows.com/contactus.html</td>
</tr>
<tr>
<td>15</td>
<td>http://upload.tucows.com/contactus.html</td>
<td>http://www.w3.org/</td>
</tr>
<tr>
<td>18</td>
<td>http://www.w3.org/</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>http://www.adobe.com/</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>http://www.tucows.com/privacy.html</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>http://www.gendex.com/ged2html</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The old and new top-25 list of W

4/21/2005
Conclusion & future works

• A collusion-proof rating scheme based on PageRank algorithm.

• Future works:
 ▪ Optimum analysis of the adaptive-resetting scheme.

 ▪ Study of Web link structure evolution under PageRank within the framework of game theory.