The Design of A Distributed Rating Scheme for Peer-to-peer Systems

Debojyoti Dutta1, Ashish Goel2, Ramesh Govindan1, Hui Zhang1

1University of Southern California
2Stanford University
Outline

- Research motivations
- Basic design issues in P2P rating schemes
- A distributed rating scheme to incentivize cooperation in P2P file-sharing systems
- Dealing with collusion and malice
- Conclusion & future work
Research motivations

- Object: P2P file-sharing systems
 - Open social communities.
 - An explicit reputation layer was ignored in the original design.

- Goal: Build reputation in such systems
 - Incentive for user participation
 - free-riding phenomenon [Adar et al. 2000] [Saroiu et al. 2001]
 - Isolation of malicious users
 - distribution of inauthentic files
 - propagation of virus or worms [VBS.Gnutella] [Fizzer.Kazza]
P2P rating: basic design issues

- “Distributed” rating
 - following P2P design philosophy.

- “Efficient” rating
 - low cost to run and maintain this reputation system.

- “Collusion-proof” rating
 - Effectiveness.
A distributed rating scheme

- To incentivize cooperation in P2P file-sharing systems

- Main components
 - Positive rating
 - Rating verification scheme
Positive rating

• The recognized service done to the community

 • R_i of user i: non-decreasing with the number of successful requests that it has satisfied within some sliding time window.

 • The higher R_i user i has, the better service it gets from the network.
Verification-based rating scheme

Rating R_i

Data request

(i, R_j)

User i

Verify if R'_i is true for i

User j
Two verification schemes

- Structured verification scheme (SVS)
 - Each user has a set of designated supervisors which keep its up-to-date reputation information.
 - The supervisors are responsible for the verification.

- Unstructured verification scheme (UVS)
 - A user j queries some of user i’s claimed customers for the verification, and believes i when the majority of the probed users reply with a “yes”.

6/6/2003 P2Pecon 8
Assumption

- Users are distinguished by their IP addresses.
 - At a given time, one IP address corresponds to an unique user.
SVS – the supervising topology

• In the supervisory directed graph
 ❑ Any user is random to its supervisors.
 ❑ No small supervising loop exists.
 ❑ There is a fast reactive approach for any user j to deliver a message to any other user i’s supervisors, and the path never includes i.
A Chord[stoica2001] supervising overlay

A Chord network with 8 users and 8-bit key space

6/6/2003
P2Pecon 11
SVS – the supervising topology

- In the supervisory directed graph
 - Any user is random to its supervisors.
 - No small supervising loop exists.
 - There is a fast *reactive* approach for any user j to deliver a message to any other user i’s supervisors, and the path never includes i.
Rating verification in SVS

Yes/No

user i’s supervisors

ID(i)

verification request

user j

Supervising overlay

user i
Structured verification scheme

- “Distributed” rating ✓
- “Collusion-proof” rating ✓
- “Efficient” rating ?
 - Extra cost to maintain a supervisory overlay when the underlying network is not DHT-based.
 - Repetitive actions when there are multiple supervisors.
Unstructured verification scheme

1. When user j decides to verify user i’s rating, it gets a portion of i’s customer list, and asks the users on the list if i did the claimed service to them.

- The customer samples should be random on the full customer list of node i.
- Disclosure of full customer list could raise privacy concern, and incur high communication cost.

2. When the majority of the probed users reply with a “yes”, j is convinced that R'_i is R_i.
Randomly sampling without the complete customer list

user i’s customer list

\[
\begin{array}{cccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} & \text{g} & \text{h} \\
\end{array}
\]

hashing

user i’s customer vector

\[[2, 3, 1, 2] \]
P2P users

users

selfish malicious altruistic

non-colluding colluding
Colluding selfish users

• Possible solution 1: discrete rating
 - Grade★ : if a user has served no more than 10 users.
 - Grade★ ★ : if a user has served between 10 and 100 users.
 - Grade★ ★ ★ : if a user has served more than 1000 users.

• Possible solution 2: rating as virtual currency
 - A user has to pay (reduce its rating) for the service it claims to have received.
 - SVS: asks the requestor’s supervisors for a payment.
 - LUVS: future work.
Colluding malicious users

- One possible strategy
 1. A user i quickly earns a high rating by faking transactions with other colluding users.
 2. User i then does bad things until earns bad-enough reputation.
 3. User i quits the network to clear its history,
 4. User i rejoins the network and repeats the above actions.
Conclusion & future work

- A simple distributed rating scheme to incentivize cooperation in P2P file-sharing systems.
 - Two distinct verification schemes

- Refine LUVS scheme to handle colluding selfish users.

- Refine our rating scheme to be collusion-proof.